独自の高性能識別技術

株式会社竹田技研

〒702-8057 岡山市南区あけぼの町25-5

受付時間
9:00~17:00
定休日
土曜・日曜・祝日
お気軽にお問合せください
086-259-0568

騒音対策例(1)

 騒音対策例として、プラント内の圧縮機場の騒音対策を行った例を示します。

 プラントにガスを供給するために圧縮機とタンク類で構成される設備があり、そこで大きな騒音が発生しました。機器が破損に至るようなことがあってはいけないということで検討しました。

圧縮機場の配置

 現場に赴きましたが、設備の機器が配管でつながっているため、どこでも同じような音が発生しており何が騒音源かを判断できませんでした。そこで、とりあえず騒音を測定し、測定騒音を分析することにしました。

 騒音の周波数分析を行った結果、どこかで共鳴していると思えるスペクトルになっていました。そこで、共鳴が発生する可能性がある機器をリストアップし、タンクが原因ではないかと考えました。

 現象としては、タンクの入り口で噴流が形成され、噴流によってタンクの内部流体が共鳴しているのではないかと考えられました。

 そこで、入口部に多孔円管を取り付け噴流サイズの微細化を図りました。

〇 バルブなどで流れを絞ると後流に噴流が発生し、大きな騒音が発生することがあります。上流と下流の圧力比が1.89を超えると超音速噴流が形成され大きな音が発生します。この音の強度は噴流の速度の8乗に比例します。そこで、この流速を抑えれば(圧力比を小さくすれば)かなり騒音が小さくなります。また、多孔板等を使用すれば噴流のサイズが小さくなり高周波音に変換することができます。なお、本例ではタンクの入り口で断面積が急拡大するために噴流が形成されています。安全弁などからガスが放出されるときにも噴流が形成されます。

〇 離れた2点で騒音を測定し、その2つの騒音の相関を計算すると騒音がどちらのマイクに早く到達しているかが分かります。そこで、本例では2点計測をすれば音源位置の特定ができたのではないかと思います。

〇 水道管内の音の相関解析により水道管の漏洩場所を正確に計算することができます。実際に配管で試したことがありますが、精度よく漏洩場所を特定できました。

騒音対策例(2)

 サイロからの発生騒音の例です。

 本例のサイロはプラスチック製のペレットを貯蔵するサイロで、ペレットをサイロの下部から取り出す際に条件によって騒音が発生するというものです。また、その発生音は像の鳴き声或いは大型トラックのクラクションの音に近い音質です。

 騒音のスペクトログラムを計算すると、該当する音が発生している時間帯では多数の高調波成分が存在することが分かりました。高調波が多数存在すると、どこかが共鳴しているということを考えがちで、本例でも共鳴を起こしそうなところをリストアップしましたが、該当するような部品はありませんでした。

 この現象に関しては、大学での研究例があり、原因は stick slip という結論です。 stick slip は自励振動の一種で、特定の相対速度・特定の接触圧力で2固体がくっついたり離れたりする振動現象で、この際に固体が共振し特有な音が発生します。 stick slip により発生する音としてはブレーキの鳴き音や黒板をチョークでなぞったときの音、ドアの開閉時の音など多数の例があります。

 サイロでの音は、ペレットの貯蔵量が多いときに発生するということでしたので、ペレットの貯蔵量が多いときにペレットとサイロの壁の接触状態が自励振動を起こす条件の範囲内になるものと思います。

〇  stick slip により発生する騒音は工業製品においても非常に多く発生します。騒音のスペクトルに高調波成分があると気柱共鳴が原因と考えがちですが、実際には stick slip が原因であることが多いと思います。

〇 ある機械の起動時に像の鳴き声のような音が出るが原因は何かという相談を受けたことがあります。この時は、原因を突き止めることができませんでしたが、 stick slip の可能性が高いと考えています。また、ある機械で、金属ベルトの摩擦力を利用して回転円筒を押さえているが、油が切れると騒音が発生する。原因は何かという相談を受けたこともあります。これは stick slip が原因だと回答しました。

サイロの概念図

騒音対策例(3)

 騒音対策例として、油圧制御機器で発生した音の例を示します。

 油圧制御機器がある特定の状態でピーという音が発生するが、この周波数帯域での音の発生は有害なため、この音を止めたいという問題です。

 問題の音の周波数分析をすると高調波成分を含むスペクトルが得られました。そこで、どこかの部品で共鳴が起こっているかもしれないと考え、機器をリストアップして共鳴周波数を計算しましたが、該当する部品がありませんでした。

 このため、原因究明に役立てるために、現象が連続的なものか不連続なものかを確認しました。当時よく使用されたA/D変換器はサンプリング周波数が低いため、高速のA/D変換器を使用してサンプリング周波数200kHzでサンプリングし、スペクトログラムを計算しました。スペクトログラムは声紋とも呼ばれていますが、横軸が時間で縦軸が周波数です。該当する時刻の該当する周波数の音が大きいと濃い点を、音が小さいと薄い点を描くことで音の周波数と強弱の時間変化が示されます。

 問題の音が共鳴音であるとすると、時間的に強度はあまり変化しません。ところが、計算したスペクトログラムは下図の上段のようなものではなく、下段のように不連続なものでした。そこで、問題の音は共鳴音ではなく、打音のようなものではないかと考えました。人間には、打音は打撃の周期が長いと不連続音として聞こえますが、周期が短くなると連続音として聴取されます。

 そこで、打撃音が発生する部品がないかを検討したところ、制御弁の弁と弁座で衝突が生じる可能性があることが分かりました。特定の条件で制御弁が不安定となり自励振動を起こし、高速で弁座に衝突して打撃音が発生したものです。

〇 電車に乗っていて、スタートしたときにゴツンゴツンという音がしてそのうちに音が聞こえなくなったことを経験したことがあります。これは電車の車輪のレールと接触する面(踏面)が損傷し、この部分がレールを打撃して生じる現象です(フラット音)。この音は電車の速度が遅いときは打撃音として観測できますが、そのうちに連続音となり聴取できなくなることが知られています。

測定された騒音のスペクトログラム

騒音対策例(4)

 騒音対策例として、ボックスに振動対策を行った例を示します。

 新設のボックスで大きな振動が発生し、使用に支障をきたしているため対策を行いました。

 最初にボックスの振動を測定すると、波形がかなり正弦波に近いことが分かりました。このため、ボックスが強制振動により共振をしている可能性が考えられました。そこでボックスの周囲を観察するとボックスに空気を送るためのダクトがつながっていました。また、このダクトはボックスから数十メートル離れたところにあるブロワにつながっていました。

 そこで、そのブロワの回転数と羽根枚数を確認し、1次の回転音成分の周波数(回転数×羽根枚数)を計算すると、計算値と問題の振動の振動数が一致しました。

 このため、ブロワの振動がダクトを介してボックスに到来し、その振動数がボックスの固有振動数に近いため大きく振動しているという結論に至りました。

 ブロワの取付け状態を観察すると、床に直付けになっていました。そこで、床とブロワの間に防振対策を行い振動を低減することができました。

〇 回転機械では、回転に伴い振動が発生します。その際の1次の振動数は以下の計算式で計算できます。更に、この整数倍の振動数でも大きな振動が生じます。また、振動数は計算値と実測値で完全に一致します。

 ブロワ:(毎分回転数)÷60×(羽根枚数) Hz

 ギ ア:(毎分回転数)÷60×(歯数) Hz

 玉軸受:(毎分回転数)÷60×(球数) Hz

〇 防振は、ブロワと防振ゴムなどの防振機構で1自由度の振動系を形成すると仮定して、防振機構のばね定数を決定します。

〇 振動源と機械的につながっている部品があれば、その部品に必ず振動が伝達します。そこで、かなり距離があっても機械的につながっていれば振動が伝達します。また、同様に配管内での騒音の減衰は小さいため、配管内の音も相当遠くまで到達します。化学プラント内のサイロで大きな音が出ているため相談を受けました。また騒音のスペクトルも計測されていました。しかし、スペクトルでは現象を把握できなかったため現地まで趣きサイロで観察すると、ポンプの音が聞こえました。何のことはない、新設されたポンプの音が配管でつながった数百m離れたサイロに到達し、騒音問題になったということでした。

騒音対策例(5)

 騒音対策例として、機械の騒音対策を行った例を示します。

 機械部品としてモーターと圧縮機が使われていましたが、騒音と振動が大きく、対策をする必要がありました。これらの部品は軸でつながっており、同じ回転数で回転しています。また、問題の騒音は調和的な騒音で、基本の周波数が回転数の整数倍であることもわかりました。ところが、モーターの軸受に使用されている軸受けの球数と圧縮機の羽根枚数が同じであり、どちらからも同じ周波数の音が発生するため、周波数分析だけではどちらが原因かを特定できないという厄介なものでした。

2点計測による音源の特定

 そこで、問題の騒音がどちらからきているかを計測して真の音源を特定することにしました。

 図にあるように、2つのマイクを使用して騒音を同時計測し、2つの騒音の相関をとりました。マイクの位置や間隔を複数設定しましたが、どのような配置でもモーター側からきているという結果が得られ、騒音源はモーターであるという結論になりました。